JOURNAL OF COMPUTATIONAL PHYSICS 106, 108-114 (1993}

Efficient Parallel implementation of Molecular Dynamics
on a Toroidal Network. Part Il. Multi-particle Potentials

K. EsSSELINK AND P. A.]. HILBERS

Koninklijke/Shell- Laboratorium, Amsterdam, Shell Research B.V,, Badhuisweg 3, 1031 CM Amsterdam, The Netheriands

Received October 17, 1991; revised July 6, 1992

implementations for molecular dynamics on parallel computers
generally use either particle paraltelism or geometric parallelism. For
short-range potentials, geometric parallelism has the advantage that
communication can stay restricted to processors nearby. Usually, half
the environment around a processor is communicated, using Newton's
third Jaw. This poses a problem for the implementation of multi-particle
potentials (e.g., “bending” and “torsien™}. For instance, if it is said that
only one processor should actually calculate the forces on the particles
invoived, it will be difficult to determine which processor this should
be, given that the particies are distributed over two or more processors,
We present an efficient technique to do so and prove that it is correct.
The technique requires No more communication than the computation
af twao-particle interactions and ensures that patentials are only
evaluated once. © 1993 Academic Press. Inc.

1. INTRODUCTION

The aim of molecular dypamics (MD) is to study the
macroscopic behavior of systems of particles by simulation.
Newton's equations are integrated over time for all
particles, The forces on the particles are determined by
the microscopic interaction potentials. Several potentials
are widely used in MDD codes.

Parallel computers are a very powerful tool for perform-
ing large-scale computations. Designing efficient parallel
programs involves the distribution ol even amounts of work
over the various processors in such a way that the
communication overhead is not too large. In general, this
poses new problems and requires new techniques.

This article is the second of a series of two articles, in
which we describe the design of a parallel implementation of
molecutar dynamics. The first article ([5], bereinafter 1) dis-
cusses the distribution of work onto the processors of the
network, and shows the columm mapping to be efficient for
networks of up to a certain size. Under the requirement that
all potentials be evaluated only once, this mapping of space
makes evaluation of multi-particle potentials somewhat
complicated, since the particles invoived may reside on
different processors. In Section 2 we explain the problems

N21-9991/93 §5.00

Copyright © 1993 by Academic Press, Inc.
All rights of reproduction in any form reserved.

encountered and introduce a technique to solve them. We
prove this technique to be valid.

Results from timings are presented in Section 3 and
Section 4 contains concluding remarks.

In this article, we restrict ourselves to short-ranged
potentials and toroidal networks ol processors (MIMD),
In the following subsections we start by introducing a
few well-known potentials and explaining the concept of
geometric parallelism,

1.1. Paoteutials

To familiarize the reader wilth some potentials actually
used in MD [17], we introduce them here. In the following,
r; d(élrt:notes the vector from particle { to particle j, and
ri = |ryl. The Coulomb potentiai is defined by

€;C;

(1)

U Amggr,

It is classified as a iong-range potential, for even at a
considerable distance its influence is not negligible. In a
simulation, this means that particles have an interaction
with all other particles in the system. Since there are O(N?)
pairs of particles (N being the number of particles), the total
simulation time increases rapidly with the number of
particles, unless refined methods are used to reduce this
to O(Nlog N)[3]or O(N}[2,4,7].
The Lennard—Jones potential has the following form:

s -C))

After some distance, it decays Lo zero with the sixth power.
Usually, the potential is truncated, for instance at R, = 2.5¢.
This means that there is no Lennard-Jones interaction
between particles at distances greater than R,. For constant
density, this means that the amount of interactions scales

(2)

PARALLEL MOLECULAR DYNAMICS, II

lingarly with N. Well-known techniques [1, 13], also of
O[N), can be used to exploit this.

To simulate the behavior of chains of particles, potentials
are introduced to couple specific particles. To model a
chemical bond between two particles, a harmonic bonding
potential can be used:

BO; = 3 BAr

i

B (3)

Bending forces in a chain of bonded particles are modeled
by the three-particle potential

BE = Fag(6,), (4)
in which 8, is the angle between r; and r; in the
chain (4, J, k).

A four-particle torsion potential can be associated with

an angle 7, between the planes ijk and jk:
T0 ;= FrolT). (3)

The Lennard-Jones, bonding, bending, and torsion
potentiais are short-range. Assuming constant density and a
homogeneous distribution of particles, the amount of work
done for each particle does not depend on the total number
of particies in the universe. Implementations of order O(N)
are therefore feasible.

The potentials shown appear in many simulations. It is
not the topic of this article to examine their specific proper-
ties. We are interested in potentials in their generic form,
being a function of properties (e.g., position) of T particies.
The only requirement is that the potentials be short-range,
1.e., the distance between any two particles of the T-tuple is
at most R,.

1.2. Parallel Computing

Molecular dynamics 1s very suited for being done on
parallel computers, as is explained in I. There we argued
that geometric paralielism, the distribution of space rather
than particles, can lead to small communication overhead
and that it is possible to derive a mapping of space onto the
processor network that yields minimal communication.
During the computation, a processor calculates the trajec-
tories of all particles it finds in its space. If all interaction
potentials are short-range, it is not necessary to exchange
information over long distances, because distance in the
simulation universe is related to distance in the processor
network. For two dimensions, Fig. 1 clarifies the procedure.

Recall that we use a network of toroidally connected pro-
cessors. It 1s used “in two dimensions” and not in a line [9]
to reach better scale-up properties. In the example, the
x-size of a processor’s cell equals 3R, the y-size $R_. This
means that a processor needs information about particles in

109

B
——
P Y
L.«
R,
FIG. 1. Processor P and its environment,

processors at distance 2 in the x-direction and distance 3 in
the p-direction. We call this distance “stretch,” and speak of
x-stretch and p-stretch. During the communication phase,
each processor has to receive information from its com-
munication environment and simultaneously send its own
information to the other half of the surrounding processors.
During the force evaluation phase, all Lennard-Jones inter-
actions can be computed, storing the calculated forces for
the own particles as well as the communicated particles
(Newton’s third law). Next, the forces for the neighboring
particles need to be sent back. During the communication
phases (particles and forces), all processors perform the
same communication scheme, and it can be implemented
very efficiently (see the Appendix).

In the force evaluation phase, a processor has to perform
potential evaluation for all pairs of particles in which
at least one particle belongs to itself. We note that the
communication environment ¥’ would also suffice for
two-particle potentials {Fig. 2).

%' is certainly more efficient as far as the communication
phase is concerned. The force evaluation phase also looks
different: a processor needs to evaluate potentials of any
pair of particles in which either at least one particle belongs
to the processor itself or in which one particle has an x-coor-
dinate within the processor's x-range and the other a
y-coordinate within the processor’s y-range. For example,
in Fig. 2, processor P also has to evaluate the potential
between particles 2 and 5. However, the communication
environment of Fig. 2 leads to extensive {and expensive}
particle searches for multi-particle potentials. (This is
explained in Subsection 2.4.) We have not been able to find
any literature on implementations using "

If we assume constant density and a homogeneous
distribution of particles, the amount of work done by cach
processor for two-particle potentials is roughly of the order

EY) P ¥

L. .

«b

FIG. 2. Another communication environment % for processor P.

110

of N, the amount of particles per processor. Note that an
increase of the number of particles while maintaining con-
stant density implies an increase of the simulation universe
size. Therefore, the size of the sub-universe per processor
increases, which has an effect on the stretch, and the cost, of
the communication phase. Something similar holds for
constant-pressure simulations, where universe size, and
sometimes stretch, changes during the simulation. Note
also that, by construction, the parallel algorithm is an
implementation of the linked-cell method for particle
tracking [1, 8].

To make explanation easier, in the following we use two
dimensions.

2. MULTI-PARTICLE POTENTIALS IN 2D

2.1, Definitions

We now turn our attention to multi-particle potentials in
a parallel algorithm based on the communication environ-
ment of Fig.1. A discussion on this subject cannot
reasonably be held in words alone; we therefore introduce a
few definitions.

We have P=P_» P, processors, fixed in a torus topol-
ogy. A processor is identified by a coordinate pair (x,).
The simulation universe % has sizes R, + R,. It is divided
into P equal parts. The domain assigned to processor p is
called %, and has size B .« B,, with B, =R, /P, and
B,=R,/P,. Potentials are to be calculated for T-tuples of
particles, and they never extend over distances larger than
R_;ie, the distance between any two particles of a potential
tuple is smaller than or equal to R,. In this article,
Te{2,3,4}. The x-stretch S, equals TR_/B,7; likewise
S,.=[R,/B,7. For processor p with coordinates (i,/} the
communication environment %, is defined as

6= (o (((i—S.<u<i+5)
Aj=S,Se<j-1)
vI((i-S,<ugi—1)

A (v:j))):%(u,v])' (6)
The work environment #, for processor p is defined as the
union of ¥, and %,. Figure 1 provides an example of a
processor's work environment for §, =2 and §,=3.

2.2, Searching Potential Tuples

Using particle parallelism, it is relatively easy to deter-
mine which processor should calculate the four-tuple poten-
tial for (a, b, ¢, 4}, since particies do not change processors.
Where a, b, ¢, and d are can be determined initially, and one
processor, preferably the one owning all four particles,
should evaluate the potential. The same holds for a sequen-

ESSELINK AND HILBERS

[0,0)
o
ae—d'b

=9
e

L.

FIG. 3. The work environment for processor (G, 0).

tial implementation, where one can build a list of all tuples
initially and use this during the simulation. For geometric
parallelism, things are more complicated.

The first problem is to determine which processor
evaluates a given potential. In the example shown in Fig. 3
this cannot be done by processor (0, 0), since processor
(0, 0} lacks information about particle 4. This means that it
is not possible to let the processor with the “first” particle of
a tuple evaluate the potential. One solution would be to
enlarge %.0) 5O as to incorporate all particies around (0, 0)
within R_. This, however, would make the communication
phase twice as expensive. It also suffers from the following
drawback.

In Fig. 4 we see a tuple completely within #{, ,,, so pro-
cessor (0, 0) has all the information to evaluate the poten-
tial. Here, there are seven processors p, each having all four
particles a, b, ¢, and d in their % . It is, however, not very
attractive to let processor (0, 0) evaluate the potential. An
important reason for this is that #,, has to be scanned for
possible tuples. This can be done by taking a particle g from
#, and trying to find other particles in #/, that belong to a
potential tuple with ¢. If a complete tuple is found, the
corresponding potential can be evaluated. If one or more
particies are missing, it cannot be done. There is no way to
determine beforehand whether all particles will be present;
therefore this expensive search is necessary. Note that an
extra criterion is necessary to prevent the potential being
evaluated by more than one processor.

2.3. Efficient Tuple Scan

An efficient way to scan %), would be to restrict the search
to tuples containing at least one particle in %, {(“ETS”:
efficient tuple scan). It then suffices to take a particle g from
%, (instead of #) and trying to find other particles in ¥,
which belong to a tuple with ¢. In general, an MD
implementation will already contain a piece of code that
does something like this, namely the evaluation of the pair-

0,0) ¥
cep—ed | x
ael—+b

-

FIG. 4. Seven processors p; with (a, b, ¢, d} in their %,

PARALLEL MOLECULAR DYNAMICS, 11

potentials. This provides a perfect opportunity to maintain
a list of possible candidates for multi-particle potentials. So,
during the entire scan of #, for particle g € %, in search of
pair-potentials it is involved in, we build lists of tuples of
multi-particle potentials it may also be involved in. After the
scan of particle ¢, these tuples are checked to see if they are
complete. If so, their corresponding potential can be
evaluated. Figure 3 provides an example of an incomplete
tuple. in which ¢ will find @ and &, but not 4. Likewise, b will
only find ¢, and a will find none. Only 4 will find a, b,
and c.

We will now prove that if the processors use ETS, any
tuple will be found by exactly one processor.

First we show that a tuple is not found more than once,
by looking at the way two-particle potentials are searched.
In this search, when particle i finds particle ; and evaluates
the pair potential, particle j will not find i. Hence, if particle
ifinds j, &, and I, with which it forms a potential tuple, none
of these last three will find &

Next, we prove that a tuple will be found at least once.
This part of the proof is considerably more elaborate. We
first describe a mesh containing all possible tuples. Recall
that any two particles from a tuple have a distance of at
most R,. The size of a processor’s cell is B, * B, which
means that any tuple r is contained in a submesh .# of size
(S, +1)=* (S, +1). See Fig. 5. So the minimum number of
cells a tuple can be in is one, the maximum is
(S, + 1) % (S,+1). By induction on a particular construc-
tion of .#, we can prove that the communication environ-
ment of Fig. 1 indeed guarantees that all tuples will be found
by at least one processor, if all processors perform the
search strategy ETS.

In the following we take [x, y] to be shorthand for %, ..
The construction of .# is straightforward. First take cell
[0, 01 and add cells in the x-direction (row 0) until the total
number is S, + 1. Then add cell [0, 1] and fill row 1, etc.,
until row §, is filled. While constructing .4, we can build a
communication environment . First, assume that a tuple
lies completely in one ceil [(, 01. Then the necessary % for
processor (0, 0} can be empty. Next, assume that a tuple has
one particle in [1, 0] and the restin [0, 0] and [1, 0]. Pro-
cessor (1, 0} will then find this tuple if it has [0, 0] in its €.
Repeating this process, if a tuple has one particle in [.S,, 0]
and the restin {0, 0] -.- [S,, 0], processor (S,, 0} will find
this if it has [0, 0] --- [§,— 1,07 in its €. The next step in

¥

L. .

C,-L—Od
ael—ob

(0,0]

FIG. 5. The minimum submesh .# containing every possible tuple.

581/106/1-8

111

constructing .4 is to add [0, 1]. If a tuple has a particle in
[0, 1] and the rest of the tuple lies in [0,0]---[S,,0] and
[0, 17, processor (0,1} will find this tuple if it has
[0,0]---[S,,0] in its €. Filling row 1, if a tuple has a
particle in [S,.1] and the rest in [0,0]---[S,,0] and
10o,17---18,,17, it will find this tuple if it has
{0,07---(5,..0] and {0, 11 ---[5,,1] in its & After
building .#, % is found to be the one defined by Eq. (6).

This proves that if a mesh of processors performs ETS to
search for potential tuples, each potential tuple will be
found by exactly one processor,

2.4. Different Communication Environments

The way in which .# is constructed determines the 4 that
is derived. For instance, if .4 is built by randomly adding
cells (instead of the row and column sequence mentioned in
the previous subsection), the necessary communication
environment for processor (i, j) is found to consist of almost
(25,4 1) % (25, + 1) cells. Also, there cannot be a smaller
one than that derived above, apart from the cases in which
the stretches are so large that two opposite corners have a
distance exceeding R,.

For pair potentials, it is not necessary for the communica-
tion environment to look like Fig. 1. The environment of
Fig. 6 would also suffice. For multi-particle potentials,
however, this communication environment does not permit
the use of ETS. It is easy to construct a counterexample in
this case for the statement that all tuples will be found (e.g.,
four particles in a row, maximum distance = R_). Further-
more, the environment cannot be efficiently communicated
with the technique described in the Appendix.

The smaller communication environment of Fig. 2 is also
not fit for use with ETS. We have already seen that, for pair
potentials, this environment needs not just a search for pairs
with at least one particle in the processor’s cell, bat also an
additional search for pairs with a particle in the same row
and a particle in the same column as the processor’s cell. For
multi-particle potentials, something similar holds. Not only
tuples with at least one particle in the processor’s cell will
have to be searched for, but also tuples with one particle in
the same row and one particle in the same column. If these
are found, an extra search for the remaining particles of the
tuple in the communication environment is necessary.

]_[F y

L. .

L

FIG. 6. An also-possible communication environment.

112

3. IMPLEMENTATION AND RESULTS

So far, we have assumed that there is one cell %, per pro-
cessor p. If the available processor network consists of few,
but very powerful, processors {such as a network of
workstations), this is not very effictent, for even a stretch of
one would be too much. In such a case, one would like to
have more ceils per processor, in which each cell edge is
roughly R, in size, see Fig. 7.

As in the previous section, the environment of the
processor consists of half the available cells. However, if
good scale-up is to be guaranteed, the individual cells of a
processor need their own communication environments, in
order to implement the standard linked-list method. If the
processor as a whole only communicates the environment of
Fig. 7, the individual cells have different environments. Ceil
C,, for instance, lacks two lower-right neighbors. This,
however, can be made up for by letting Cy and C, include
the upper-left cells in their environments. The proof that
ETS still finds all tuples is more elaborate in this case. It
needs an 4 of size (S, +C)*(S,+C,). C, being the
number of cells in the x-direction on a processor. We will
not present this proof here.

Another issue is the dimensions. Our implementation
uses three dimensions. The third dimension is mapped such
that a processor gets a column of cells. This mapping can be
proven to be optimal with respect to communication (I).
If $,=§8,=5.=1 and C.,=C,=1, Fig.8 shows the
communication environment for one cell of the column.

Another property not mentioned so far is the use of
{Verlet) particle lists to keep track of nearby particles for the
Lennard-Tongs potential. Also, lists are built to store pairs,
triples, and quadruples, respectively, of particles for which
the bonding, bending, and torsion potential has to be
evaluated. The size of the cells is taken to be R, + R,, so that
the built lists can be used several iterations before updating.
Lists are built in Procedure Verlet.

We performed simulations on transputer networks of
1% 1 up to 20 * 20 processors { T800). The results presented
in this section are mainly intended to show that ETS is an
efficient search technique, not so much that our implemen-
tation has good scale-up properties. Therefore, we restricted
ourselves to three universes, all with linear chains. The first
universe consisted of 70 chains of length 20, the second of

Ca | Ca
Co | €1 y

L. -

FIG. 7. Processor P with four cells and its environment.

ESSELINK AND HILBERS

FIG. 8. One cell (*C"} with 13 neighbors

150 of the same length, and the third of 200 chains of length
50. The parameters of our various potentials can be found
in Ref. [11]. The density was set to 2.24c > With this
density, each particle has a Lennard-Jones interaction
with =200 other particles; furthermore, it is involved in
two bonding, three bending, and four torsion potentials
(with the exception of the head and tail particles). Since the
potential tuples are stored in lists, the cost per evaluation
can be timed fairly precisely. It is found in Table I. {The
timings include energy and virial calculation; they have
not been optimized by using tabie lookup.)

Note that although the torsion is an expensive potential,
it has a contribution for four particles and that it is
cvaluated by exactly one processor. The cost per particle is
therefore roughly equal for all potentials. Also we see from
this that the evaluation of the bending and torsion potential
accounts for 5.8% of the calculation of the total force.

More important for this article is the cost of ETS. There-
fore we turn attention towards procedure Verlet. It is
important to realize that this procedure depends heavily on
the subdivision of the universe into cells. For each of its par-
ticles 4 in all its cells, a processor scans the communication
environment of the cell to look for other particles with
which ¢ has an interaction. This scanning is therefore a
function of the number of celis £ in the communication
environment and the number of particles per cell. We have

E=48.8,8.+ 25,8, +5,S.+5,5.)

+8.:+ 5, +5.. (7)

The following equation yields the time {s) per particle that
Verlet costs (potential evaluation and particle communica-
tion are excluded),

¥ = CoNAE+0.5) (8)

TABLE I

Execution Times per Potential Evaluation

Potential Time {s)
Lennard-Jones 110
Bonding 125
Bending 306
Torsion 507

PARALLEL MOLECULAR DYNAMICS, II

TABLEII
The Cost of ETS Compared to Verlet

No. particles Bending/torsion ETS/Verlet
1400 No 484x 10"+ 73x 10~4
1400 Yes 9.70x 1073+ 14x107?
3000 No 338 x1073£47x 107
3000 Yes 688x 1073+ 1.0x1073
10000 Yes 48x1077 419107

in which N, equals the number of particies per cell. Qur
simulations showed that

Co=752x10"°+£25x 1078, (9)
Each simulation was performed twice, once without and
once with bending and torsion evaluation. Both types of
simulation evaluated Lennard-Jones and bonding poten-
tials. Within the accuracy, the value of C, does not depend
on whether or not bending and torsion potentials are
evaluated. This shows that Verlet is dominated vastly by the
search for Lennard-Jones (and bonding) potentials,

Comparing the two types of simulation yields an oppor-
tunity to assess the time it takes (for ETS} to find potential
tuples. We therefore timed the actual cost of the ETS part of
Verlet. Table I1 shows the quotient of the execution times
for ETS and Verlet. In the first two universes, the time it
takes to find the bonding pairs is about equal to the time it
takes to find the bending and torsion tuples. All three are
negligibly small compared to the search time for Lennard-
Jones potentials. From the simulations without bending
and torsion we find that the time it takes to find a bonding
pair equals 1.72 x 107*+ 4 x 10~%, independent of N, We
further find that the time it takes to find a bending or torsion
tuple equals 9.35x 107*+ 1.6 x 107°. This figure depends
slightly on the structure of the chains.

In short, using ETS for finding bonding, bending, and
torsion tupies requires less than 1% of the time needed to
find the Lennard-Jones pairs for typical configurations.

100

1400 particles ©=— 1
3000 particles 4—
10000 particles S=

10000, fine tuned D

10 & linear speedup —

Time (s)

0.5 s i Ll i Pt |
1 10 100
Pracessors

1000

FI1G. 9. Execution times for 1400, 3000, and 10,000 particles.

113

With the above equation it is possible to calculate the actual
ratios for any system.

For completeness, the performance of the implementa-
tion is given for three universes in Fig. 9. The scales are
log/log, so a slope of —1 indicates a linear speedup. Note
that the “bumps” in the graph are caused by the (discrete)
changes in the stretch. The graph of 10,000 particles also
shows four additional timings in which the number of boxes
was tuned to yield an optimum result. The effect can be
quite dramatic. Furthermore, the results are obtained on the
20 = 20 network, in which the “unused” processors for the
timings of networks of a smaller size merely pipe the data to
complete the necessary torus. Therefore, the times in Fig. 9
are somewhat too high. As is to be expected, the perfor-
mance of the larger networks is not too good for small
universes with, say, 1400 particles. The efficiency (speedup/
processors) decreases to S50%. The scaled speedup,
however, is quite good.

This implementation is also used for the simulation
reported in [12]. For 32,000 particles, the time per iteration
was reduced to 0.75s, mainly due to lower density
(0.7677).

4. CONCLUDING REMARKS

We have shown that it is possible to implement multi-
particle potentials on a network of processors when geo-
metric parallelism is used. The implementation requires no
more communication than for two-particle potentials and
evaluates a particular potential by exactly one processor.
The search for the potential tuples can be embedded
efficiently in the search for two-particle potentials. Three
tests served as an example.

APPENDIX: EFFICIENT COMMUNICATION

With the environment shown in Fig. 1 it is possible to
implement the communication of the particles very
efficiently, as described in Refs. [6, 10]. There it is explained
for a stretch equal to one only (see Fig. 10). In order to
broadcast information from P {o 4, b, ¢, and 4, this informa-
tion is first sent to b and 4, which can be done at com-
munication cost 1 (the processors are adjacent). Sending it
to ¢ and ¢ would normally cost 2, since the information has
to be routed through (say) 4. But since the information is
already there, 5 might send this to ¢ and ¢ directly.

This principle can be generalized. Even unattractive com-
munication environments, such as that depicted in Fig. 11,

i v

L. .

FIG. 10. Processor P and its environment (stretch=1),

d P

114

x x x X x
x
X x x
X P X Y
b X
X
x X X X

FIG. 11. An unattractive environment {marked “x”) for processor P.

can benefit from this technique. The naive cost of broadcast-
ing' information from P to all 17 processors P; marked x
would be 3., dist(P, P,). But using the knowledge about
where to find the information, the communication cost can
be kept down to 17. In Fig. 6 the technique cannot yield the
same cost.

This is an important possibility. It shows that there is no
need for “more links” on each processor. With the environ-
ment in this article, the communication cost is of the order
of the size of the environment. More links, to shorten
communication paths, cannot improve this (so the torus
connectivity is good enough). One can use this finding to

ESSELINK AND HILBERS

prove that the plain “z-mapping” of the universe is the best
one can do, given the state-of-the-art processor networks

(1)
REFERENCES

1. M. P. Allen and D. J. Tildesley, Computer Simulation of Liguids
{Oxford Sci., New York, 1987).

. A, W. Appel, SIAM J. Sci. Stat. Comput. 6 (1), 85 (1985),
. J. Barnes and P. Hut, Nafure 324, 446 (1986).
. K. Esselink, Inform. Process. Lett. 41 (3), 141 (1992).

. K. Esselink, B. Smit, and P. A. J. Hilbers, J. Comput. Phys. 105 (1)
{1993).
6. G. Fox, M. Johnson, G. Lyzenga, 8. Otto, I. Salmon, and D. Walker,

Solving Problems on Concurrent Processors, Vol. I (Prentice-Hall,
Englewood Cliffs, NJ, 1988).

7. L. Greengard and V. Rokhlin, J. Comput. Phys. 73, 325 (1987).

8. R. W. Hockney and J. W. Eastwood, Computer Simulation Using
Particles (McGraw-Hill, New York, 1981).

9. H. G. Petersen and J. W. Perram, Mol Phys. 67 (4), 849 (1989).

10. M. R. S. Pinches, D. J. Tildesley, and W. Smith, Mol. Simul. 6, 51
(1991),

11, D. Rigby and R.-J. Roe, J. Chem. Phys. 87 (12). 7285 (1987).

12. B. Smit, P. A. J. Hilbers, K. Esselink, L. A, M. Rupert, N. M. van Os,
and A. G. Schilijper, J. Phys. Chem. 95, (1991).

13. L. Verlet, Phys. Rev. 159 (1), 98 (1967).

[- V'S R e]

